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Abstract

PEGASUS has achieved state-of-art results on
12 diverse downstream datasets in summariza-
tion, but has only tested input lengths up to
1,024 tokens. This work proposes a technique
for extending beyond 1,024 tokens: replacing
self-attention in PEGASUS with Longformer’s
attention mechanism for improvements in pro-
cessing documents of thousands of tokens or
longer. Modifications on PEGASUS’s posi-
tional embeddings, dropout probabilities, and
attention pattern are required to create our
model, Long-PEGASUS. We evaluated Long-
PEGASUS on the PubMed dataset. Experi-
ments demonstrate that we do not have suffi-
cient evidence to prove that it has outperformed
the original PEGASUS on long-document sum-
marization due to computational constraints.

1 Introduction

Abstractive text-summarization is the task of gen-
erating a summary while retaining the essential
information of a given document. Such generated
summaries may compose new phrases or sentences
and should be similar to how human summarize
documents.

PEGASUS (Zhang et al., 2019) has achieved
state-of-the-art results on 12 diverse downstream
datasets. This success is partly due to applying
both gap-sentence generation and masked language
modeling simultaneously as a pre-training objec-
tive. Having achieved competitive results of input
lengths up to 1,024 tokens, it hypothesizes that it
would remain competitive on longer documents
through the generalization of sinusoidal positional
encoding. We believe that its memory and com-
puting power requirements make it infeasible to
process long sequences on standard hardware.

Besides PEGASUS, recent work on abstractive
∗These authors contributed equally

summarization has shown encouraging results on
relatively short documents (Nallapati et al., 2016;
See et al., 2017; Paulus et al., 2017; Li et al., 2017),
these approaches struggle with summarizing longer
sequences. Their inability to capture long-term de-
pendencies across the entire sequence is due to the
restriction of packing all of the information into a
single vector(Shao et al., 2017; Cohan et al., 2018).

To address this issue, we propose replacing the
self-attention in PEGASUS with Longformer’s at-
tention mechanism, a self-attention operation that
scales linearly with the sequence length. (Beltagy
et al., 2020a) We hypothesize that, with sufficient
training, our model, Long-PEGASUS, will outper-
form vanilla PEGASUS and other models on the
task of long document summarization. The evalua-
tion metrics is ROUGE (Lin, 2004) score and the
dataset used is PubMed (Cohan et al., 2018).

Our motivation for this work is to verify the pos-
sibility of switching out the self-attention of trans-
former models with Longformer’s attention mech-
anism as proposed by the authors of Longformer.
By doing so, we will help to provide the NLP com-
munity an easier integration of their model with
Longformer’s attention mechanism.

2 Related Work

Left-to-Right Language Models Models like
Transformer-XL (Dai et al., 2019), Adaptive Span
(Sukhbaatar et al., 2019), Compressive (Rae et al.,
2019) are some prior work on adapting Transform-
ers for long-documents that uses left-to-right (ltr)
approach to process long documents. However,
these models are unsuitable for bidirectional con-
text for transfer learning summarization. (Beltagy
et al., 2020a)

Discourse-Aware Attention Model Cohan et al.
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Figure 1: Comparing the full self-attention pattern and the configuration of attention patterns in our Longformer.
(Beltagy et al., 2020a)

(2018) includes a hierarchical encoder, which cap-
tures scientific documents’ discourse structure, and
a discourse-aware decoder that generates the sum-
maries. The decoder uses the different discourse in-
formation to modify the word-level attention func-
tion. Doing so allows their model to have a better
context vector and have higher accuracy in repre-
senting important information.

Reinforced Model Paulus et al. (2017) The model
introduces a neural network model with an intra-
attention in which a decoder has an attention mech-
anism attend to previously generated words to gen-
erate output for long-document abstractive summa-
rization.

Compared with other pre-existing models, our
work’s strength is that we are exploring the concept
of extending pre-trained models to be useful for
longer document summarization. Instead of train-
ing from scratch, extending PEGASUS with Long-
former will reserve the prior knowledge from the
pre-training. Long-PEGASUS will significantly
reduce the computational cost when fine-tuning on
a task-specific summary.

3 Methodology

3.1 Longformer

Longformer (Beltagy et al., 2020a) introduces an
attention mechanism that acts as a drop-in replace-
ment for the standard transformer self-attention by
combining local windowed attention with a task
motivated global attention. This modified trans-
former architecture allows the self-attention oper-
ation to scale linearly with the sequence length,
making it versatile to process long documents.

Sliding Window First, the sliding window within
the attention pattern is used to capture the local con-
text’s importance (Figure 1b). Fixed-size window

attention is surrounding each token, and multiple
stacked of such layers results in a large receptive
field, allowing the top layer to have access to all
input locations and build representations that incor-
porate information across the entire input.

Dilated Window and Global Attention Suppos-
edly, a dilated sliding window is used to increase
further the receptive field, similar to a dilated CNN
where the window has gaps of size dilation d (Fig-
ure 1c). However, dilated sliding window is not
used in our implementation as it is not implemented
in the Huggingface module (Wolf et al., 2020). It
was noted that the implementation of dilated win-
dows needs special computation optimization mod-
ules, which are currently unavailable (Beltagy et al.,
2020a). It is also noted that the implementation of
global attention is also added on a few pre-selected
input locations as windowed and dilated attention
are not flexible enough to learn task-specific repre-
sentations (Figure 1d).

3.2 PEGASUS

PEGASUS is trained on a vast corpus of web-
crawler documents. In PEGASUS, important sen-
tences from documents are selected and masked.
Then, these gap-sentences are concatenated into a
pseudo-summary with the corresponding position
of each selected gap sentence being replaced by a
mask token [MASK1] to inform the model.(Zhang
et al., 2019) Important sentences are chosen by fol-
lowing a similar algorithm similar to ROUGE.

Due to similarity in model architecture of BART
and PEGASUS, in Huggingface module, Pegasus
implementation inherits from Bart class. There-
fore, the implementation of Long-BART and Long-
PEGASUS is almost identical except for a few
changes, such as a different positional embedding -
Learned Embeddings for Bart and static Sinusoidal
embedding for Pegasus.
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Figure 2: Long-PEGASUS Congifuration

3.3 Implementation
Dataset The PubMed dataset (Cohan et al., 2018)
composes of biomedical and life science literature,
and is used for training the Long-PEGASUS model.
The entire dataset consists of 130,397 articles with
3,031 and 198 word tokens on average for articles
and abstracts respectively. We first preprocessed
the articles by removing tokens such as <S> and
</S> from the beginning and the end of sentences.
As the articles are tokenized into sentences, we
have to concatenate the sentences to form a string
consisting of the entire article and a string for the
entire abstract.

Long-PEGASUS Our Long-PEGASUS model is
implemented by replacing the self-attention in PE-
GASUS with the Longformer attention module
by following closely to the RoBERTa (Liu et al.,
2019) fine-tuning example (Beltagy et al., 2020c)
in the Longformer paper and fine-tuning example
on Long-BART (Suraj, 2020). To convert PEGA-
SUS to Long-PEGASUS, here are the following
changes:

Dropout The dropout ratio for attention probabil-
ities is expected in the Longformer self attention.
Therefore, attention probs dropout prob in Long-
PEGASUS is set to attention dropout in PEGA-
SUS.

Attention Pattern We replaced the PEGASUS self-
attention with the Longformer self-attention in the
self-attention part of the encoder. We left the cross
attention and the decoder self-attention with the
traditional (n2) attention module as changing cross
attention to the local attention module did not seem
sensible. To keep computation small in the decoder
and the cross attention, we left the decoder size as
the default values in Pegasus. Following closely to
Longformer, sliding window attention with a win-
dow size of 512 is used for Long-PEGASUS.

Positional Embeddings Extending the position

embedding from 512 positions of PEGASUS is
needed as Longformer sets the max position as
4,096, as shown in Figure 2. Then, to leverage
PEGASUS’s pre-trained weights, we initialize the
new position embeddings by copying the 512 posi-
tion embeddings from PEGASUS multiple times
as it is noted that analysis of BERT’s (Devlin et al.,
2018) attention heads show strong learned bias to
attending to local context (Beltagy et al., 2020a),
including the previous or next token. By using the
copied initialization, it will preserve the local struc-
ture everywhere except for the partition boundaries.
Making these changes will allow Longformer’s pre-
training to converge with a small number of gradi-
ent updates rapidly.

Training We used train/validation/test ratio of
60/20/20 for training Long-PEGASUS. Long-
PEGASUS is trained without freezing any lay-
ers, as the extended embeddings were initialized
through copying the existing positional embed-
dings. Ideally, we would like to train Long-
PEGASUS with ample training samples to demon-
strate the hypothesized improved results on longer
documents. We attempted standard training and
Longformer’s (Beltagy et al., 2020a) staged train-
ing procedures where attention window size and
sequence length were increased across multiple
training stages. However, issues arises regarding
RAM overflow. We could not train it beyond ten
samples per epoch with batch size two as both the
RAM and time limit of Google Colaboratory pre-
vented any further training.

Evaluation Evaluation is conducted on the eval-
uation set in full sequence length measured by
ROUGE (Lin, 2004) scores. (Kryściński et al.,
2019). The comparison is conducted through com-
paring predicted abstracts and actual abstracts.



4

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

Model 0 examples
R1 / R2 / R3

5 examples
R1 / R2 / R3

10 examples
R1 / R2 / R3

BART (pre-trained) 44.04/14.99/29.16 44.04/14.99/29.16 44.04/14.99/29.16
PEGASUS (pre-trained) 58.31/21.97/46.26 58.31/21.97/46.26 58.31/21.97/46.26
Long-BART 44.81/9.58/31.30 NA - RAM Overflow NA - RAM Overflow
Long-PEGASUS 53.34/13.76/48.75 NA - RAM Overflow NA - RAM Overflow

Table 1: ROUGE-F1, ROUGE2-F1 and ROUGEL-F1 scores of low resource summarization on PubMed.

Epoch Train Loss Val Loss
1 9.454 9.069
2 9.269 9.004
3 9.432 8.942
4 9.190 8.885
5 9.152 8.762

Table 2: PEGASUS fine-tuning with Batch Size 4 and
Number of Samples 10, Learning Rate 2e-6

Epoch Train Loss Val Loss
1 15.514 14.893
2 13.307 11.669
3 12.079 10.868
4 8.431 10.427
5 7.268 10.264

Table 3: BART fine-tuning with Batch Size 4 and Num-
ber of Samples 10, Learning Rate 2e-6

4 Results

ROUGE Comparison Table 1 shows that that
PEGASUS has the highest score across ROUGE
scores at 0 examples of training, but Long-
PEGASUS and Long-BART remain competitive
compared to vanilla PEGASUS and BART.

RAM Overflow Due to computational constraints
of Google Colab Pro, training of Long-BART and
Long-PEGASUS with sequences of length 4,096
was not possible as the RAM limit was reached.
To overcome this issue, modifications were made
to lower the batch size, number of epochs, and
training samples with no success in the end. We
attempted to reduce the max length of a sequence
to 2,048, but an error occurred when fine-tuning
Long-BART and Long-PEGASUS, caused by an
invalid lookup of the embedding weight matrix. For
that reason, we decided to run our training function
on vanilla BART and PEGASUS only to test out
the fine-tuning process.

Training Results Table 2 and Table 3 show the
fine-tuning loss value for PEGASUS and BART re-

spectively. Despite the limited training samples, a
trend has been observed: as epoch increases, train-
ing loss, and validation loss gradually decrease.

5 Discussion and Conclusion

From the results in Table 1, we concluded that there
is not enough evidence to support our initial claim
that Long-PEGASUS will outperform vanilla PE-
GASUS and other models on the long document
summarization task. Potential reasons and strug-
gles in providing strong evidence to support our
hypothesis are as follows:

Model Variations The results of the Longformer-
infused models are expected as their additional
embeddings are copied, which adds noise to se-
quences that may have previously worked well on
their vanilla counterparts. To improve the results,
sufficient training is required to optimize the new
weights. PEGASUS remains at the top as no modi-
fication has been made. BART placed second over-
all. Meanwhile, it is shown that Long-PEGASUS
and Long-BART have a similar ROUGE score,
with Long-PEGASUS scoring slightly higher. We
believe this outcome is due to the differences in per-
formance between their base models, PEGASUS
and BART. This is further proven as PEGASUS
outperforms BART in several short summaries in
the PEGASUS paper (Zhang et al., 2019).

ROUGE ROUGE offers a cheap evaluation method
for summarization models. However, it has been
widely discussed on whether it is qualified to be
the standard evaluation metric for summarization
tasks, with strong evidence against it (Kryściński
et al., 2019). It is also found that low-ROUGE sum-
maries often were high-quality (Zhang et al., 2019).
These findings brought us to question and discuss
whether there will ever be an evaluation metric for
summarization tasks that evaluate summaries as hu-
mans do. To achieve such a feat, we believe that the
metric must achieve human analogous understand-
ing to determine relevance, consistency, fluency
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and coherence in generated summaries (Kryściński
et al., 2019).

Version Difference The Original Longformer
model was in version 2.11.0 of HuggingFace which
did not have PEGASUS implemented. There-
fore, a lot of effort was put into changing it to
the current version. About midway through the
project, AllenAi’s Longformer team released their
version of LongformerEncoderDecoder (Beltagy
et al., 2020b) which was used for debugging and
changing to version 3.1.0. Adding a global atten-
tion mask to the Bart class of the Huggingface
module needed some effort to consistently track it
through the model into the Longformer Attention
class.

Accessibility With the discovery of transformers
(Vaswani et al., 2017), state-of-the-art benchmarks
in natural language processing are being surpassed
left and right. These new found discoveries have at-
tracted increasingly more students to deep dive and
experiment with the model themselves. Though
models like BERT (Devlin et al., 2018) have al-
lowed students to achieve impressive results with
minimal data needed for fine-tuning, the fact re-
mains that transformer models are computationally
expensive. The ability to pre-train, tweak a trans-
former’s inner workings to test their hypotheses
still lies in the hands of people with sufficient com-
pute power. For this project, progress was hindered
multiple times due to computational constraints.
We look forward to a future where significant im-
provements have been made to the accessibility of
transformers, such that anyone can have a shot at
discovering something new.

Future Work For future work, we want to con-
struct a detailed tutorial on replacing BERT-style
models with Longformer’s attention mechanism.
We would also like to obtain sufficient compute to
test Long-PEGASUS on datasets with longer docu-
ments such as books. We believe that abstractive
summarization of books can produce meaningful
insight that readers may not have expected due to
the generative nature of abstractive summarization.

6 Statement of contributions

Three of us designed the project together. Ak-
ila’s primary focus is on implementing the Long-
PEGASUS and Long-BART models and writing
the paper. Curtis and Elaine’s primary focus is on

training and evaluating the two models, preprocess-
ing data, and writing the paper.
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